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A variational phase field model is proposed for curve smoothing, in which a weight func-
tion is associated with the similarity measure term in the model so that important geomet-
ric features could be well preserved. Finite element approximation of the proposed model
is given for its numerical implementation. Since the model has a linear weak variational
form, the discretized system could be solved efficiently by many existing solution tech-
niques. An effective algorithm is also developed, for the purpose of feature preservation,
to automatically determine the weight from the given data. Various numerical examples
are presented to demonstrate effectiveness and robustness of the proposed method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The problem of geometry smoothing or fairing such as curve/surface smoothing is of importance in a wide range of fields of
science and engineering. For instances, following an image segmentation process, the boundary of the identified object usu-
ally has many zigzags and spurious components as shown in Fig. 1; due to sampling errors of physical equipments or some
other problems, curves or surfaces extracted from images produced by volumetric MRI or 3D laser scanners inevitably suffer
from noises as well [5,13,16]. In order to do further analysis, we often have to smooth out the resulting geometry models. It is
indeed these particular applications that motivate the work discussed in this paper.

Partial differential equation (PDE) based methods have gained great attention and success in geometry smoothing. Exist-
ing approaches fall into two categories: one is evolution and the other is optimization. The main idea of evolution-based ap-
proaches is borrowed from linear heat equations. This technique was originally transplanted into image denoising, called the
‘‘P&M diffusion” [15], and in turn extended to geometry smoothing. In [16] Taubin discussed a discretized version of the
Laplacian operator on surface meshes. Desbrun et al. [5] used an implicit scheme to obtain a stable diffusion algorithm.
Clarenz et al. [4] introduced a process called ‘‘anisotropic geometry diffusion” to enhance geometric features of the object
while smoothing out noises. Some other evolution-based techniques are discussed in [1,11]. All these methods are carried
out on a discretized manifold. In optimization-based approaches, one first constructs an optimization problem that mini-
mizes certain energy functional [12,20], and then the goal of smoothing is attained by solving linear or nonlinear PDEs de-
rived from the corresponding variational formulation. The optimization-based approaches usually have well-founded
mathematical foundation which may alleviate the need for developing heuristics, and more important, can be easily incor-
porated into other re-construction tasks.
. All rights reserved.
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Fig. 1. Segmentation of a squirrel image. (a) The original image; (b) the segmented image; and (c) the noisy object boundary.
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Among various optimization-based techniques, the level-set method is widely employed to define the energy functional
by expressing some geometry information such as normal, tangent and curvature in term of the distant function [14]. A ma-
jor advantage of the level-set formulation is its topology-free property, which makes it suitable for processing very complex
shapes with topology change. Motivated by the level-set approach, several phase field models [3,6–10,18] were recently
developed based on a general energetic variation framework. Similar to the level-set formulation, representing curves
implicitly enables the phase field method to easily handle changes of topologies. When the transition width between two
phases approaches zero, the phase field model with diffuse-interface gradually becomes identical to a sharp-interface le-
vel-set formulation and then it can be reduced properly to a classical sharp-interface model. Since all computations can
be performed on a fixed regular mesh, the difficult implementation issues such as re-meshing needed by front tracking type
methods can be avoided.

In this paper, a novel phase field model for curve smoothing is proposed, whose energy functional consists of a regularity
measure term and a similarity measure term; in particular, the approximated symmetric area difference is used in the sim-
ilarity measure together with a data-dependent weight function in order to preserve important geometric features such as
corners of the curve during the smoothing process. This idea differs from some previous works [4,17,20] in the sense that
instead of decreasing the diffusion effect, controlling the effect of the external force is considered. More remarkably, we
developed an effective algorithm for determination of the weight, in which the weight is computed automatically from
the given noisy curve without any artificial interference. An advantage of the proposed phase field model over the level-
set formulation developed in [20] is that the weak variational form derived from the proposed model is linear, which enables
us to employ existing simple and efficient numerical solution techniques with solid mathematical foundations. A finite ele-
ment method is used to discretize and numerically solve the phase field model in this paper. We note that the method devel-
oped in the paper also can be extended to surface smoothing without much extra effort.

The rest of this paper is organized as follows. In Section 2, a novel phase field model for curve smoothing is first proposed
together with its finite element approximation. Then in Section 3 we develop an effective algorithm for automatical deter-
mination of the weight function associated with the similarity measure from the given data so that important geometric fea-
tures of the original noisy curve can be preserved during the smoothing process. In Section 4 various numerical examples are
presented to demonstrate effectiveness and robustness of the proposed method. Finally, concluding remarks are given in
Section 5.
2. A phase field model for curve smoothing

In this section, we first recall the abstract model for curve smoothing, and present a variational phase field model with
varying weight across the physical domain. The weight function is associated with the similarity measure in the energy func-
tional and its value at each point is usually determined by using information from neighborhood of the point. A finite ele-
ment method is then employed to discretize the proposed phase field model.
2.1. The phase field model with varying weight

A curve smoothing model is usually formulated as certain functional which can be presented in an abstract manner
[20]:
C ¼ argminðregularityðCÞ þ similarityðC;C0ÞÞ; ð1Þ
where C0 and C denote the initial noisy curve and the final smoothed one, respectively. The first term is a regularity measure
of C while the second one is a similarity measure between C and C0. The similarity term plays a role as an external force
controlling the distance or difference between the noisy and smoothed curves. The solution (smoothed) curve C must be
the minimizer of the above functional (1).
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As in [18], we use a phase function / defined on the physical domain X containing the curve C to implicitly represent the
curve C. The phase function / has various phases across the domain X – it basically takes positive value inside C and neg-
ative value outside. Between these two phases there is a transition layer. Thus, the phase function can be naturally employed
to label the inside or outside of the curve C. The level-set fxj/ðxÞ ¼ 0g gives the curve, while fxj/ðxÞ > 0g represents the in-
side of the curve C and fxj/ðxÞ < 0g the outside.

With such a phase function /, we may define the regularity term as in [20] by the following formulation:
regularityðCÞ ¼ �
2

Z
X
jr/ðxÞj2 dx: ð2Þ
It is shown in [18] that the formulation (2) is approximately proportional to the length of the curve, jCj, when the phase func-
tion /ðxÞ has the form /ðxÞ ¼ tanhðdðx;CÞ=

ffiffiffi
2
p
�Þ. Here dðx;CÞ is the signed distance of x to the curve C and � the width of

transition layer.
For the similarity term, the symmetric area difference of regions surrounded by the initial curve C0 and the smooth one C,

respectively, is a natural choice as suggested in [20]. Assume that /0 is a phase function representing the initial noisy curve.
Then the following formulation may be employed as the similarity term
similarityðC;C0Þ ¼
1
2

Z
X
ð/ðxÞ � /0ðxÞÞ

2 dx; ð3Þ
which is a good approximation to the symmetric difference of areas surrounded by C and C0. Using (2) and (3), we then can
define a basic phase field model for curve smoothing as follows:
min/E0ð/Þ ¼
�
2

Z
X
jr/ðxÞj2 dxþ k

2

Z
X
ð/ðxÞ � /0ðxÞÞ

2 dx; ð4Þ
where k > 0 is a constant weighting parameter and added to control the closeness of the resulting curve to the noisy
curve.

In many applications, feature preservation when fairing curves or surfaces is often very important. As shown by many
examples in [20], a major disadvantage of the above basic curve smoothing model (4) is that important geometric features
such as corners of the curve are often eliminated along with noises during the smoothing process when a constant weighting
parameter k over the whole physical domain is used. Several anisotropic diffusion models were recently proposed for avoid-
ing this problem. Basically all existing anisotropic diffusion approaches are based on the simple principle that the diffusion
effect should be small in the feature regions. In [4,17] the authors tried to achieve this goal by a properly designed diffusion
function which changes the diffusion coefficient across different regions. On the other hand, it is worth noting [20] that
changing the diffusion effect is almost equivalent to changing the weighting parameter k associated with the similarity mea-
sure in (4).

Inspired by the above work, we propose the following modified model of (4), called a phase field model with varying weight
as follows:
min/Eð/Þ ¼
�
2

Z
X
jr/ðxÞj2 dxþ 1

2

Z
X

kðxÞð/ðxÞ � /0ðxÞÞ
2 dx; ð5Þ
where a weight function kðxÞ > 0 is used instead of a constant parameter. The question about how to appropriately deter-
mine kðxÞ for a given noisy curve so that corner information could be well preserved will be addressed in the next section.
Thus, the original problem of curve smoothing can be formulated as finding the function / ¼ /ðxÞ defined on the domain X
that minimizes the functional Eð/Þ. It is easy to see that the functional Eð/Þ is strictly convex, and we have the following
theorem on the existence of the minimizer of Eð/Þ.

Theorem 2.1. The minimization problem defined by (5) has a unique minimizer.
2.2. Finite element approximation of the phase field model

Assume that the minimization problem (5) has a minimizer / 2 H1
0ðXÞ, then / can be characterized by the following weak

variational formulation:
að/;wÞ ¼
Z

X
kðxÞ/0ðxÞwðxÞdx; 8w 2 H1

0ðXÞ; ð6Þ
where
að/;wÞ ¼ �
Z

X
r/ðxÞ � rwðxÞdxþ

Z
X

kðxÞ/ðxÞwðxÞdx:
According to the standard Lax–Milgram theory [2], we have the following theorem on well-posedness of the above weak
variational formulation:
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Theorem 2.2. If /0 2 L2ðXÞ, then the weak variational formulation defined by (6) has a unique solution / in H1
0ðXÞ.

To construct a finite element approximation of the weak variational formulation (6), we take a discrete function space
Fig. 2.
right: A
Vh ¼ fvh 2 C0ðXÞ \ H1
0ðXÞjvh jK 2 PkðKÞ; 8K 2 Jhg; ð7Þ
where Jh is a uniformly regular triangulations of X consisting of triangles K whose diameters are bounded above by the mesh
size parameter h, and Pk denotes the space of all polynomials of degree not larger than k. Then the finite element approxi-
mation of (6) is to find /h 2 Vh such that
�
Z

X
r/hðxÞ � rwhðxÞdxþ

Z
X

kðxÞ/hðxÞwhðxÞdx ¼
Z

X
k/0ðxÞwhðxÞdx; ð8Þ
for any wh 2 Vh. The resulting linear system is symmetric positive definite and can be efficiently solved by the preconditioned
conjugate gradient or algebraic multi-grid method.

For easy reference, we name the above algorithm the phase field method for curve smoothing (PFMCS). According to the
finite element theory, convergence of the solution of (8) can be proved by standard arguments (see [2]):

Theorem 2.3. The finite element approximation (8) of the weak variational formulation (6) has a unique solution /h 2 Vh and /h

satisfies the following error estimates:
k/� /hks;X 6 Chkþ1�sk/kkþ1;X; 0 6 s 6 k; ð9Þ
where k � ks;X denotes the standard Sobolev space norm.

We also note that the strong form of the Euler–Lagrange equation for the minimization problem (5) is given by
��D/ðxÞ þ kðxÞð/ðxÞ � /0ðxÞÞ ¼ 0 ð10Þ
with certain Dirichlet boundary conditions. Thus, the system (6) may also be viewed as a weak variational formulation of
(10).

3. Determination of the weight kðxÞ

The remaining important question is how to appropriately choose the weight function kðxÞ for a given data (a noisy curve)
so that geometric features of the curve such as corners can be well preserved during the smoothing process. Provided that a
proper corner detector is available, this can be achieved by specifying a non-homogeneous ‘‘attraction potential” which
makes corner more attractive – setting the weight kðxÞ large in regions near corners and small in flat regions. Discrete cur-
vature could be one of good corner detectors in many applications, but since the raw datum are usually eroded by noises in
geometry smoothing cases, point-wise evaluation or approximation of the curvature is not reliable at all. Inspired by the
neighborhood idea proposed in [19], a similar averaging technique is utilized in this paper to overcome this hurdle in design-
ing the corner detector.

We first describe the main idea behind our approach. Let x 2 X be a concerning point. A reference circle SðxÞ centered at
the point x is introduced for the ‘‘averaging” purpose – for removing effects caused by noises and detecting corners. If the
boundary (smooth) curve C dose not pass through SðxÞ, then clearly x is not close to the boundary C and therefore kðxÞ should
be small. Now, let us concentrate on the situation of the reference circle SðxÞ being divided into two parts A and B by C. First
we suppose that the part of C intersecting SðxÞ is quite straight (i.e. curvature is small); There are totally three cases, see
Fig. 2 for an illustration. In these cases kðxÞ should be small without a doubt. If a corner of C is contained inside of SðxÞ, then
we must be much more careful; see Fig. 3 where four such cases are presented. We think kðxÞ should be small for the second
and fourth cases since x is not very close to the corner, but kðxÞ should be large for the first and third cases. The above obser-
vations also basically hold for the case of a noisy curve if the radius of the circle is large enough to cover the amplitude of
noises.
B
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A quite straight part of C passes through SðxÞ (i.e. no corner is present). Left: AreaðAÞ � AreaðBÞ � 0; middle: AreaðBÞ � AreaðAÞ > 0 and /ðxÞ ¼ /ðBÞ;
reaðAÞ � AreaðBÞ > 0 and /ðxÞ ¼ /ðAÞ.
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Fig. 3. A highly curved part of C passes through SðxÞ (i.e. a corner is present). Top-left: jAreaðAÞ � AreaðBÞj � ð1� a=pÞAreaðSðxÞÞ where a denotes the angle
of the corner; top-right: AreaðBÞ � AreaðAÞ > 0 and /ðxÞ ¼ /ðBÞ; bottom-left: AreaðAÞ � AreaðBÞ � 0; bottom-right: AreaðAÞ � AreaðBÞ > 0 and /ðxÞ ¼ /ðAÞ.
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In the following, we present an algorithm for determination of the weight kðxÞ using local information around x. Denote Jh

as a triangulation of the computational domain X with nodes fv ig.

Algorithm 1. (Determination of kðxÞ):

1. For every node v i 2 Jh in the computational domain X:
(a) choose a reference circle Sðv i; rÞ centered at v i with a radius r;
(b) count the number of nodes, N ¼ Nþ þ N�, contained inside the reference circle Sðv i; rÞ where Nþ denotes the

number of nodes with a positive phase value ð/0 > 0Þ in Sðv i; rÞ and N� that with a negative phase value
ð/0 < 0Þ. Set Nmin ¼minfNþ;N�g;

(c) if Nmin ¼ Nþ and /0ðv iÞ > 0 or Nmin ¼ N� and /0ðv iÞ < 0, then set sðv iÞ ¼ Nmin=N, otherwise, sðv iÞ ¼ 1=2;
(d) set
kðv iÞ ¼ f ðsðv iÞÞ; ð11Þ

where f ðsÞ is a continuous positive function defined on [0,1].
2. Interpolate kðv iÞ based on the triangulation Jh to get a piecewise linear function kðxÞ which will be used in the finite
element approximation (8).
In practical implement of Algorithm 1, two things need to be carefully considered. The first one is the choice of the func-
tion f ðsÞ. It is expected that f ðsðxÞÞ is small when the curve is relatively straight which means that f ðsðxÞÞ should attain its
minimum at s ¼ 1=2. Meanwhile, it is also expected that f ðsðxÞÞ changes dramatically with respect to sðxÞ so as to produce
big difference between corner points and the other points. In our experiments, f ðsÞ is chosen to be
f ðsÞ ¼ k0ewð1�2sÞ2 ; ð12Þ
where k0 and w are some given positive constants. The function (12) gives f ðsÞ ¼ k0 when s ¼ 1=2, and changes rapidly when
s goes away from 1/2. Another possible candidate is
f ðsÞ ¼ k0ð1þwð1� 2sÞÞ: ð13Þ
The other issue is the choice of the radius r of the reference circle Sðv i; rÞ. To characterize corners of the curve, the reference
circle should be large enough so as to suppress the influence of noises. On the other hand, too large r may lead to a lot of
unnecessary computation cost and give inaccurate results especially when Sðv i; rÞ contains more than one corner. Usually,
one may start from a small circle, and gradually increases the radius until a satisfactory result is achieved. In practice, when
x is not close enough to a corner of the boundary curve C, sðxÞ calculated by the proposed algorithm is often quite small. In
order to make the sharp corners more distinguishable, a threshold can be set such that sðxÞ is assigned to be zero when sðxÞ
falls below that threshold.

The proposed Algorithm 1 works well except for outliers which might be wrongly recognized as corners by the
algorithm. To eliminate such an undesirable effect, the following extra process for detecting outliers can be added into
Algorithm 1:
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Algorithm 2. (Detection of outliers):

For every node v i 2 Jh in the computational domain:
(a) choose the reference circle Sðv i; r1Þ and count the number of nodes, N1 ¼ Nþ1 þ N�1 , contained inside S1ðv i; r1Þ;
(b) increase the radius of the circle to r2, and count the number of nodes, N2 ¼ Nþ2 þ N�2 , contained inside Sðv i; r2Þ;
(c) if Nþ1 � Nþ2 or N�1 � N�2 , then v i is regarded as a outlier and set sðv iÞ ¼ 1=2; otherwise, sðv iÞ is remained unchanged

(evaluated by Algorithm 1).

We set r2 ¼ 2r1 in our numerical experiments. For curves with outliers, Algorithm 1 is applied and followed by Algorithm
2 so that the weight kðxÞ of normal points and outliers can be correctly computed. In the following section, various examples
will be applied to test and evaluate our PFMCS method.
4. Numerical experiments

The proposed phase field method for curve smoothing with the linear finite element approximation is implemented using
C Language. We note that the resulting linear system is solved by a AMG solver from AFEPack (http://www.acm.caltech.edu/
~rli/AFEPack/). The computational domain is X ¼ ½0;1� � ½0;1�. We set the transition parameter � ¼ 0:01 and use a uniform
structured triangular mesh of X with 400� 400 nodes so that the mesh is fine enough to resolve the transition layers very
well. High-order Gaussian quadrature points are used in our experiments to evaluate numerical integrations of the phase
function and basis functions.

In the following, the PFMCS method is investigated by experiments in which corners of the given curves are desired to be
preserved during the smoothing process; in particular, the PFMCS method with varying weight will be compared with that
with constant weight to demonstrate its big advantage over the latter one. We will always take the form of (12) for f ðsÞ in
Algorithm 1 for computing the weight function kðxÞ when needed.

4.1. Two basic examples

The curve shown in Fig. 4(b) is a noisy H-shape curve. It is obtained by randomly perturbing a clear H-shape curve (see
Fig. 4(a)). We note there is no noise around the twelve corners of the curve, which make it convenient to test whether the
PFMCS method with varying weight can preserve these corners. The weight function kðxÞ is determined by Algorithm 1 with
k0 ¼ 12; r ¼ 0:075 and w ¼ 25; see Fig. 4(c) and (d) for visualization of kðxÞ. It is clear that kðxÞ has larger values around the
corners. The smoothed H-shape curve obtained by the PFMCS method with such weight is given in Fig. 5(a) and it shows that
(a) (b)

(c) (d)

Fig. 4. A noisy H-shape curve and the corresponding weight kðxÞ calculated using Algorithm 1. (a) The original clear curve; (b) the initial noisy curve; (c)
contour of the corresponding weight; and (d) mixture of the noisy curve and the weight contour.

http://www.acm.caltech.edu/~rli/AFEPack/
http://www.acm.caltech.edu/~rli/AFEPack/


(a) (b) (c)

Fig. 5. Smoothing of a noisy H-shape curve by the PFMCS method. (a) The smoothed curve using varying weight; (b) the smoothed curve using constant
weight; (c) comparison of the two smoothed curves (the curve using varying weight is colored with blue). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

(a) (b)

(c) (d)

Fig. 6. A noisy ‘‘Circ-Rect” curve and the corresponding weight kðxÞ calculated using Algorithm 1. (a) The original clear curve; (b) the initial noisy curve; (c)
contour of the corresponding weight; and (d) mixture of the noisy curve and the weight contour.

(a) (b) (c)

Fig. 7. Smoothing of a noisy ‘‘Circ-Rect” curve by the PFMCS method. (a) The smoothed curve using varying weight; (b) the smoothed curve using constant
weight; (c) comparison of the two smoothed curves (the curve using varying weight is colored with blue). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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the noises are removed effectively as well as all its twelve corners being well preserved. It is easy to see that the smoothed
curve is an excellent approximation to the original clear one. In addition, the smoothed curve by the PFMCS method with
constant weight kðxÞ � 75 is also presented in Fig. 5(b), which shows that corners of the rectangle are smeared out. For
the purpose of comparison, the above two smoothed curves are put together in Fig. 5(c), which demonstrates that the PFMCS
method with varying weight easily outperforms that with constant weight. It is variation of the weight function kðxÞ that
makes such a big difference in smoothing results.
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In Figs. 6 and 7, a noisy curve (denoted by ‘‘Circ-Rect”) formed by gluing parts of a circle and a rectangle is smoothed by
the PFMCS method. The noisy curve presented in Fig. 6(b) is again produced by randomly perturbing a clear version of the
corresponding ‘‘Circ-Rect” curve (see Fig. 6(a)), and we specially note that the noise is present on the whole curve in this
example. The PFMCS method with varying weight is first tested. We set k0 ¼ 40; r ¼ 0:0375 and w ¼ 40 in the function
(12) and the weight function kðxÞ obviously has larger values in regions close to the corners as seen in Fig. 6(c) and (d). From
the resulting smoothed curve presented in Fig. 7(a), we easily observe that the proposed method preserves all corners effec-
tively during the smoothing process and produces a good approximation to the original clear curve at the same time. Com-
pared with the resulting curve by the PFMCS method with constant weight kðxÞ � 150 (see Fig. 7(b) and (c)), the former
approach clearly does better in preserving the sharp corners.

In the following, we will quantitatively justify our observations in the above two examples. Denote by Cclear the original
clear curve (without any noise) and by Csmooth the smoothed version of the initial noisy curve by using the PFMCS method. A
distance between Cclear and Csmooth can be defined quantitatively by
Table 1
The nor

H-sh
Cons
Distð
Vary

Distð

‘‘Circ
Cons
Distð
Vary

Distð
DistðCclear ;CsmoothÞ ¼
Adiff

Aclear
;

where Adiff is the symmetric area difference of the regions enclosed by the curves Cclear and Csmooth, and Aclear is the area of the
region surrounded by Cclear . The quantity DistðCclear;CsmoothÞ is in fact the normalized symmetric area difference. Denote by
Ndiff the number of mesh points on which the phase functions representing the curves Cclear and Csmooth respectively have dif-
ferent signs, and by Nclear the number of mesh points on which the phase function representing Cclear has a positive sign.
When the (uniform) mesh is fine enough, we have
DistðCclear ;CsmoothÞ �
Ndiff

Nclear
: ð14Þ
It is clear that the smaller DistðCclear; CsmoothÞ is, the closer two curves are (i.e. the magnitude of Dist shows how good a deno-
ising result is).

Table 1 contains the statistics of the normalized symmetric area difference DistðCclear ;CsmoothÞ computed for the H-shape
and ‘‘Circ-Rect” curve examples. For the H-shape curve example, we listed results by the PFMCS method with constant
weights kðxÞ � 25;50;75;150;200, respectively, and the varying weight used above, kðxÞ ¼ 12e25ð1�2sðxÞÞ2 ; for the ‘‘Circ-Rect”
curve example, we reports results by the PFMCS method with constant weights kðxÞ � 50;100;150;200;250, respectively,
and the varying weight kðxÞ ¼ 40e40ð1�2sðxÞÞ2 . It is clear in both examples that the smoothed curve obtained by the PMFCS
method with varying weight gives the minimum DistðCclear ;CsmoothÞ.
4.2. More complicated examples

In the following we will investigate performance of the PFMCS method for more complicated examples. Fig. 8(a) shows a
noisy polygonal curve and Fig. 8(b) and (c) presents the corresponding weight kðxÞwith k0 ¼ 40; r ¼ 0:1, and w ¼ 20. It can be
observed that due to the influence of noises the contour of kðxÞ has very large effecting area around some sharp corners, and
for some natty corners it even shrinks to a point. This is partly because the noises around the sharp corners have almost the
same amplitude as the corners so that the proposed algorithm hardly differentiates corners from noises. The smoothed curve
by the PFMCS method with varying weight is given in Fig. 9(a). We also compare it with the result by the PFMCS method
with constant weight kðxÞ � 40 in Fig. 9(b) and (c). The resulting curve does preserve all corners well, but some noises
are also kept after smoothing in regions close to the corners, especially the sharp corners. A obvious compromise is to de-
crease the parameters k0 in (12) in order to get smoother results.

The next example is a noisy eight-sided star, as shown in Fig. 10(a), with many outliers. If only Algorithm 1 is applied, the
outliers will be wrongly recognized as corners. For instance, in Fig. 10(b) the outliers are kept as well as corners. In this case,
Algorithm 2 has to be applied to further detect outliers and modify the corresponding weights. Fig. 10(c) shows the result
malized symmetric area difference DistðCclear ;CsmoothÞ.

ape curve
tant weight k ¼ 25 k ¼ 50 k ¼ 75 k ¼ 150 k ¼ 200
Cclear ;CsmoothÞ 0.0230 0.0173 0.0165 0.0168 0.0176
ing weight kðxÞ ¼ 12e25ð1�2sðxÞÞ2

Cclear ;CsmoothÞ 0.0059

-Rect” Curve
tant weight k ¼ 50 k ¼ 100 k ¼ 150 k ¼ 200 k ¼ 250
Cclear ;CsmoothÞ 0.0172 0.0130 0.0121 0.0122 0.0125
ing weight kðxÞ ¼ 40e40ð1�2sðxÞÞ2

Cclear ;CsmoothÞ 0.0080





(a) (b)

Fig. 11. Comparison of the weight functions. (a) Contour of the weight used in Fig. 10(b); and (b) contour of the weight used in Fig. 10(c).

(a) (b)

(c) (d) (e)

Fig. 12. Segmentation result of an image containing words ‘‘NTU” and its smoothed boundary curves by the PFMCS method. (a) The original picture; (b) the
segmentation result; (c) boundaries of the object; (d) the smooth curve with constant weight; and (e) the smoothed curve with varying weight.
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5. Conclusions and future work

In this paper a novel phase field model and its finite element approximation are proposed for curve smoothing; in par-
ticular, the weighting parameter associated with the similarity measure in the energy functional may vary across the whole
physical domain such that important geometric features such as corners may be well preserved during the smoothing pro-
cess. We also develop an algorithm for determination of the weight from the given noisy curve without any artificial inter-
ference. These techniques are easy-to-implement and yet very effective. Various numerical examples are presented to
demonstrate effectiveness and robustness of the proposed method. It is quite straightforward to extend the method to inter-
esting surface/manifold smoothing in the three-dimensional space, which is still under our investigation. In order to over-
come limitation of the mesh resulting from the small transition layer in the phase filed model and improve efficiency of the
method, adaptive finite element solutions of the proposed model based on a posteriori error estimates will be one of our
future research directions as well. Finally, a thorough study of the possible links between TV-regularization [14] and the cor-
ner detector proposed in this work is also of great interest.
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